a2 United States Patent

Archer et al.

US009246792B2

US 9,246,792 B2
*Jan. 26,2016

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

PROVIDING POINT TO POINT
COMMUNICATIONS AMONG COMPUTE
NODES IN A GLOBAL COMBINING
NETWORK OF A PARALLEL COMPUTER

Inventors: Charles J. Archer, Rochester, MN (US);
Ahmad A. Faraj, Rochester, MN (US);
Todd A. Inglett, Rochester, MN (US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 92 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/440,252

Filed: Apr. 5,2012
Prior Publication Data
US 2012/0189012 A1 Jul. 26, 2012

Related U.S. Application Data

Continuation of application No. 12/176,840, filed on
Jul. 21, 2008, now Pat. No. 8,194,678.

Int. Cl1.

HO4L 12/28 (2006.01)

HO4L 12/701 (2013.01)

HO4L 12/725 (2013.01)

HO4L 12/913 (2013.01)

U.S. CL

CPC ... HO4L 45/00 (2013.01); HO4L 45/30

(2013.01); HO4L 47/724 (2013.01)
Field of Classification Search
CPC ... HOA4L 45/54; HOAL 45/302; HO4L 45/00;
GOGF 15/17337
USPC ..o 370/238,392,395.3,395.32
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,265,207 A 11/1993 Zak et al.
5,333,268 A 7/1994 Douglas et al.
(Continued)
OTHER PUBLICATIONS

Moreira et al., “The Blue Gene/L Supercomputer: A Hardware and
Software Story”, Intl Journal of Parallel Programming, vol. 35, No. 3,
Jun. 2007 p. 181-206.*

(Continued)

Primary Examiner — Brian O’Connor

(74) Attorney, Agent, or Firm — Edward J. Lenart; Grant A.
Johnson; Kennedy Lenart Spraggins LLLP

57 ABSTRACT

Methods, apparatus, and products are disclosed for providing
point to point data communications among compute nodes in
a global combining network of a parallel computer that
include: determining a class route identifier available for all
of the nodes along a communications path from an origin
node to a target node; configuring network hardware of each
node along the communications path with routing instruc-
tions in dependence upon the available class route identifier
and the network’s topology; transmitting, by the origin node
along the communications path, a network packet to the target
node, including encoding the available class route identifier
in the network packet; and routing, by the network hardware
of each node along the communications path, the network
packet to the target node in dependence upon the routing
instructions for each node and the available class route iden-

tifier.

18 Claims, 10 Drawing Sheets

US 9,246,792 B2

Page 2
(56) References Cited 2008/0084827 Al 4/2008 Archer et al.
2008/0301704 Al 12/2008 Archer et al.
U.S. PATENT DOCUMENTS 2009/0037598 Al 2/2009 Archer et al.
2009/0043912 Al 2/2009 Archer et al.
5,530,809 A 6/1996 Douglas et al. 2009/0043988 Al 2/2009 Archer et al.
5,666,361 A 0/1997 Aznar et al. 2009/0138892 Al 5/2009 Almasi et al.
6,094,715 A * 7/2000 Wilkinson etal. 712/20 2010/0014523 Al 172010 Archer et al.
6,622,233 Bl 9/2003 Gilson 2013/0176904 Al 7/2013 Archer et al.
7,000,033 B2 2/2006 Lee
7,007,189 B2 2/2006 Lee et al. OTHER PUBLICATIONS
7,051,185 B2 5/2006 Gil . « .
7.099.341 B2 /2006 Lilnsg(ﬁelt ot al. Fe.LraJ et al., “A Mes.sage Scheduling S?heme for All-t,(’)-All Person-
7185138 B1* 2/2007 Galicki wovv.ovveeeerrrnn, 710/316 alized Communication on Ethernet Switched Clusters”, IEEE Trans
7,483,998 B2 1/2009 Rabinovitch on Parallel and Distributed Systems, vol. 18, No. 2, Feb. 2007, p.
7,673,011 B2 3/2010 Archer et al. 264-276 *
7,773,018 B2* 8/2010 Leonardetal. 370/409 Final Office Action, U.S. Appl. No. 11/834,159, Mar. 29, 2012.
8,144,709 B2 3/2012 H043L7(1)/23/ gg Rosen et al., “Multiprotocol Label Switching Architecture”, Network
8,194,678 B2* 6/2012 Archer etal. .o....... 370/395.3 nggk‘i‘EgFC;m“p Re?.ue“ f‘gf“.nmems (RF(}i 39/3/1)’ Jan. 2f°01’/pfp)
8 345 548 Bz * 1/2013 Gusat H04L 45/00 - k] 'Org (On me pu lcatlon)’ URL' ttp' 'let 'Org Tic
i 370/230 rfc303 1.txt.
8,902,892 B2* 12/2014 Hoenicke ...ooovvviiii. H04L 45/00 Sedgewick, “Algorithms in C++ Part 5: Graph Algorithms, Third
370/392 Edition”, Addison-Wesley Professional, Dec. 2001, pp. 1-15,
2002/0049608 Al 4/2002 Hartsell et al. Pearson Education, Inc., USA.
2003/0126289 Al 7/2003 Aggarwal et al. Office Action, U.S. Appl. No. 11/832,955, Jun. 23, 2009, pp. 1-13.
2003/0137978 Al* 7/2003 Kanetakec.cccc....... 370/386 Office Action, U.S. Appl. No. 11/832,955, Nov. 30, 2011, pp. 1-18.
2004/0078493 Al 4/2004 Blumrich et al. Office Action, U.S. Appl. No. 12/176,840, Apr. 23, 2010, pp. 1-23.
2005/0201356 Al* 9/2005 Miuraetal. 370/351 Office Action, U.S. Appl. No. 12/176,840, Mar. 11, 2011, pp. 1-25.
2006/0101158 Al 5/2006 Shand et al.
2006/0227774 Al* 10/2006 Hoenickeccccovvernene 370/389 * cited by examiner

U.S. Patent Jan. 26, 2016 Sheet 1 of 10 US 9,246,792 B2

ARNANRNR ANANWARS GANANNS RAWANAR SARRNSNG ARANARS UNANRARR AWNNRNWS RNSAWANS UARANSAR RARARRNG NRNRARAR NAWRNRR ARNWRNR ANRRRNNS Saeaeae

A,

Z3

Point To Haint)
Medweork 108

" Loind Doenbining

Natwark H18

S Applialio

124

Smrvine Node

Topraing
Duta Storage i

U.S. Patent

Jan. 26, 2016

Sheet 2 of 10

US 9,246,792 B2

{omput Node 182

Prouesshyg Qo
s

84

A 1A8

o

A

i

Operating System 162

{8 Condrolier 188

| DMAEngine 197

i

Faint To Point
Aoiaphy

Edharrat
Adagder

172

t

Giotaal Combining
Madwk Adapter

H

s i
gt

Eihamet

& 5
idastar

Pind To Polnt
Mtk
105

] %

W

Paerd

o

FIG, 2

U.S. Patent Jan. 26, 2016 Sheet 3 of 10 US 9,246,792 B2

Lewrpte Nogle 157

“of Pt T0 PORY bt & &
Adapter o 10 g
Al

186 FIG. 3A

Parant

){»f;@mm;i% Nods 152

{ilobal
Hetwork Adupler

U.S. Patent Jan. 26, 2016 Sheet 4 of 10 US 9,246,792 B2

+Z *

L9 9 VA
3
e 40 e

.)
FJr.
W o

% Yo

Dots Represent
Compatte Nodes

H
[

o
o)

=5

Poind- To-Point Natwork Organiead
85 A Torme O Mesh' 108
Fia 4

U.S. Patent

Jan. 26, 2016 Sheet 5 of 10

o \""
S Vg,
."" ‘*'«,. -,
o ., s
e’ - e
4 S
$1 o 28
1 o ".,_’ MM M & <
2 3 3
X\, : Ranks
Ry By
2%
’\.‘r“ 3
o
3

-
¢

« . T
%,
~

~a
e
.

-

Clobal Combining Metuon
Ogtimiznd For Collsolive
Ot

tons Ang Qrganizad A3 8
Biary Tren 108

Doty Represaal
Compuste Nodes

FIG. 5

Nodes

US 9,246,792 B2

U.S. Patent Jan. 26, 2016 Sheet 6 of 10 US 9,246,792 B2

For Al OF 1he LOmpite NOBes
Palh 648

E A Hay tor Packet Wath A Cured et
Encode Qs:gifyi; " é, gi é}ésﬁ* Carand Raareation it A4

Sent! The Resenadion Paskst To Tha
L ?sgmze Modes Along The Comm Puth §

Y

»a{ ﬁ& * "‘z?mmia ’%Me &émg, %‘W ummrwimﬁ

& Resaration ?33‘5 W A&
Rscuesied BRI EYH

Yoag--ed Forward The Reseevation Packet 818

Undat

 Curend
"f{mws w OH
Ja Avatabie?
£33

v

Of Bach Gomputs Node Rlong The
ingtructions In E)egsﬁm‘e o nos The
Ag A Medwrk Topology For The Network 828
Hesorvation Piy 804 111
R%,s%eé ”

i Mode Alang The Cnmasicaions
1 Keoaiving The Reserestion Packet 634

rars

Cz:»'mmﬁéﬁ::és

?\a@%wefi\ Py .ei §§g

Fnile, By The Netanrk Hardwans OF Each Computs Node Along The Uonveunicatons

Path, The Network Packet To The Taget Dompute Nods 838

Fis. &

U.S. Patent Jan. 26, 2016 Sheet 7 of 10 US 9,246,792 B2

{oinbol Combbnng

Stk 108 W

Compute Nodgs

e Depth First Saarch Path

FIG. 7A

® Raprosents A Gumpule Nods

Forgag T
For Mogde 1

Node 1] HI IR
&

g ard ded tarf e
i Ran il g Eovi

4]

FIG. 7B

U.S. Patent Jan. 26, 2016 Sheet 8 of 10 US 9,246,792 B2

23 Yas LI5S Mose
31 Y Aewiabiite Table BOG

ot Combining

4
hatwork 3B 4
gty th;%.‘ :

i Yos g
23 Yus
3% Yas
4§ Yas
51 Yas

i 3 e Reprasanis A Link
% Repmsenis A Qompde Noda o v
‘ . ; Betiween Compuly Modes
i An Opeeationsl Grog tuveen Compul Hade

Ao Commamications Path

FIG. 8

U.S. Patent Jan. 26, 2016

Giobat Combiring
Mobwork 108 -

g

Sheet 9 of 10

US 9,246,792 B2

irtruelions 900

& Hepracenty A Gompudn Nods
in An Operstions! Group

o Reprasents A L
Betwesr Compyute Nodes

s Onsprinadions Path

Matanrk
Hantwars 2 wotie

B o

i

s

Router
1)

&

/

=4

%

4

FIG. 8A

Reuling

« Chasg Rosls

icdantitiar B4

FIG. 98

U.S. Patent

Jan. 26, 2016

Sheet 10 of 10

US 9,246,792 B2

Datermine A Ciass Rouls idenhlr Avpliaiie For A (8 Tos Compule Nodss

Haong The Comsnunications Peth g:gkj,z

Swlest, By Each L
Requestsd Clas

ule Mode &
s Fouts identifer 1000

Farform An Arettuos Opsoation T Oldain et
The Reguesiad Class Fowte denlfier YWl e gg%ﬁgiwl
The }4;5{; et W ga-i""" A : {Rin :}f}

Avniiabie Clowe Bouts I 818

Nehwork Tonology 818

2N

shis Class Route

rigarns Nelwork Hardware O
;ﬁmizvm Palhy Wi ﬁazﬁ;ﬁg ?ik’ih,af"f?ﬁ
iderdifior And &

T Egch Compuily Node Aong The

 Mabwork T

Highes! Valus Wi

fions That Assoviate The Requested Ulass Roule
s Ve Matwork Links Batwesnn That O
Fack Domgars Nnde Scdisnent Tn That Compnte Nods Blnag The

The Houling
ifar Haing The
pie Nods Antd

Comenmications Pait) :g_::a,

Teansmt, By The Ungin Compas Mot
Cogpnunicalnns ?a&%& A

Target Conpula

rk Packet Tis The
Mode 836

Hatwork Pagke

ok i’"‘ ﬁ\

o

Enpods The Avedabls Tlass Roule ide

Auaiiable Closs
Roulg i §

™

réifinr In &

Mabwork Packet 832
Routs, By The Network Hardwars UF kach Computs Nods Alerg

Path Tre Network Packst To The Targel Convgute Mwe ﬁg&

US 9,246,792 B2

1
PROVIDING POINT TO POINT
COMMUNICATIONS AMONG COMPUTE
NODES IN A GLOBAL COMBINING
NETWORK OF A PARALLEL COMPUTER

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation application of and claims
priority from U.S. patent application Ser. No. 12/176,840,
filed on Jul. 21, 2008.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The field of the invention is data processing, or, more
specifically, methods, apparatus, and products for providing
point to point data communications among compute nodes in
a global combining network of a parallel computer.

2. Description of Related Art

The development of the EDVAC computer system of 1948
is often cited as the beginning of the computer era. Since that
time, computer systems have evolved into extremely compli-
cated devices. Today’s computers are much more sophisti-
cated than early systems such as the EDVAC. Computer sys-
tems typically include a combination of hardware and
software components, application programs, operating sys-
tems, processors, buses, memory, input/output devices, and
so on. As advances in semiconductor processing and com-
puter architecture push the performance of the computer
higher and higher, more sophisticated computer software has
evolved to take advantage of the higher performance of the
hardware, resulting in computer systems today that are much
more powerful than just a few years ago.

Parallel computing is an area of computer technology that
has experienced advances. Parallel computing is the simulta-
neous execution of the same task (split up and specially
adapted) on multiple processors in order to obtain results
faster. Parallel computing is based on the fact that the process
of'solving a problem usually can be divided into smaller tasks,
which may be carried out simultaneously with some coordi-
nation.

Parallel computers execute parallel algorithms. A parallel
algorithm can be split up to be executed a piece at a time on
many different processing devices, and then put back together
again at the end to get a data processing result. Some algo-
rithms are easy to divide up into pieces. Splitting up the job of
checking all of the numbers from one to a hundred thousand
to see which are primes could be done, for example, by
assigning a subset of the numbers to each available processor,
and then putting the list of positive results back together. In
this specification, the multiple processing devices that
execute the individual pieces of a parallel program are
referred to as ‘compute nodes.” A parallel computer is com-
posed of compute nodes and other processing nodes as well,
including, for example, input/output (‘I/O’) nodes, and ser-
vice nodes.

Parallel algorithms are valuable because it is faster to per-
form some kinds of large computing tasks via a parallel
algorithm than it is via a serial (non-parallel) algorithm,
because of the way modern processors work. It is far more
difficult to construct a computer with a single fast processor
than one with many slow processors with the same through-
put. There are also certain theoretical limits to the potential
speed of serial processors. On the other hand, every parallel
algorithm has a serial part and so parallel algorithms have a

15

20

30

35

40

45

55

2

saturation point. After that point adding more processors does
not yield any more throughput but only increases the over-
head and cost.

Parallel algorithms are designed also to optimize one more
resource the data communications requirements among the
nodes of a parallel computer. There are two ways parallel
processors communicate, shared memory or message pass-
ing. Shared memory processing needs additional locking for
the data and imposes the overhead of additional processor and
bus cycles and also serializes some portion of the algorithm.

Message passing processing uses high-speed data commu-
nications networks and message buffers, but this communi-
cation adds transfer overhead on the data communications
networks as well as additional memory need for message
buffers and latency in the data communications among nodes.
Designs of parallel computers use specially designed data
communications links so that the communication overhead
will be small but it is the parallel algorithm that decides the
volume of the traffic.

Many data communications network architectures are used
for message passing among nodes in parallel computers.
Compute nodes may be organized in a network as a ‘torus’ or
‘mesh,” for example. Also, compute nodes may be organized
in a network as a tree. A torus network connects the nodes in
a three-dimensional mesh with wrap around links. Every
node is connected to its six neighbors through this torus
network, and each node is addressed by its x,y,z coordinate in
the mesh. In a tree network, the nodes typically are connected
into a binary tree: each node has a parent, and two children
(although some nodes may only have zero children or one
child, depending on the hardware configuration). In comput-
ers that use a torus and a tree network, the two networks
typically are implemented independently of one another, with
separate routing circuits, separate physical links, and separate
message buffers.

A torus network generally supports point-to-point commu-
nications. A tree network, however, typically only supports
communications where data from one compute node migrates
through tiers of the tree network to a root compute node or
where data is multicast from the root to all of the other
compute nodes in the tree network. In such a manner, the tree
network lends itself to collective operations such as, for
example, reduction operations or broadcast operations. The
drawback to current tree networks, however, is that such
networks typically does not lend themselves to and are inef-
ficient for point-to-point operations.

SUMMARY OF THE INVENTION

Methods, apparatus, and products are disclosed for provid-
ing point to point data communications among compute
nodes in a global combining network of a parallel computer.
Each compute node connected to each adjacent compute node
in the global combining network through a network link.
Providing point to point data communications among com-
pute nodes in a global combining network of a parallel com-
puter includes: determining, from among a plurality of class
route identifiers for each of the compute nodes along a com-
munications path from an origin compute node to a target
compute node in the network, a class route identifier available
for all of the compute nodes along the communications path;
configuring network hardware of each compute node along
the communications path with routing instructions in depen-
dence upon the available class route identifier and a network
topology for the network, the routing instructions for each
compute node associating the available class route identifier
with the network links between that compute node and each

US 9,246,792 B2

3

compute node adjacent to that compute node along the com-
munications path; transmitting, by the origin compute node
along the communications path, a network packet to the target
compute node, including encoding the available class route
identifier in the network packet; and routing, by the network
hardware of each compute node along the communications
path, the network packet to the target compute node in depen-
dence upon the routing instructions for the network hardware
of' each compute node and the available class route identifier
encoded in the network packet.

The foregoing and other objects, features and advantages
of the invention will be apparent from the following more
particular descriptions of exemplary embodiments of the
invention as illustrated in the accompanying drawings
wherein like reference numbers generally represent like parts
of exemplary embodiments of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an exemplary parallel computer for pro-
viding point to point data communications among compute
nodes in a global combining network according to embodi-
ments of the present invention.

FIG. 2 sets forth a block diagram of an exemplary compute
node useful in a parallel computer capable of providing point
to point data communications among compute nodes in a
global combining network according to embodiments of the
present invention.

FIG. 3A illustrates an exemplary Point To Point Adapter
useful in a parallel computer capable of providing point to
point data communications among compute nodes in a global
combining network according to embodiments of the present
invention.

FIG. 3B illustrates an exemplary Global Combining Net-
work Adapter useful in a parallel computer capable of pro-
viding point to point data communications among compute
nodes in a global combining network according to embodi-
ments of the present invention.

FIG. 4 sets forth a line drawing illustrating an exemplary
data communications network optimized for point to point
operations useful in a parallel computer capable of providing
point to point data communications among compute nodes in
a global combining network according to embodiments of the
present invention.

FIG. 5 sets forth a line drawing illustrating an exemplary
data communications network optimized for collective
operations useful in a parallel computer capable of providing
point to point data communications among compute nodes in
a global combining network according to embodiments of the
present invention.

FIG. 6 sets forth a flow chart illustrating an exemplary
method for providing point to point data communications
among compute nodes in a global combining network of a
parallel computer according to embodiments the present
invention.

FIG. 7A sets forth a line drawing illustrating an exemplary
global combining network useful in a parallel computer
capable of providing point to point data communications
among compute nodes in the global combining network
according to embodiments the present invention.

FIG. 7B sets forth a line drawing illustrating an exemplary
forwarding table useful in a parallel computer capable of
providing point to point data communications among com-
pute nodes in a global combining network according to
embodiments the present invention.

FIG. 8 sets forth a line drawing illustrating exemplary class
route availability tables useful in a parallel computer capable

10

15

20

25

30

35

40

45

50

55

60

65

4

of'providing point to point data communications among com-
pute nodes in a global combining network according to
embodiments the present invention.

FIG. 9A sets forth a line drawing illustrating exemplary
routing instructions useful in a parallel computer capable of
providing point to point data communications among com-
pute nodes in a global combining network according to
embodiments the present invention.

FIG. 9B sets forth a line drawing illustrating exemplary
network hardware configured with routing instructions useful
in a parallel computer capable of providing point to point data
communications among compute nodes in a global combin-
ing network according to embodiments the present invention.

FIG. 10 sets forth a flow chart illustrating a further exem-
plary method for providing point to point data communica-
tions among compute nodes in a global combining network of
a parallel computer according to embodiments the present
invention.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

Exemplary methods, apparatus, and computer program
products for providing point to point data communications
among compute nodes in a global combining network of a
parallel computer according to embodiments of the present
invention are described with reference to the accompanying
drawings, beginning with FIG. 1. FIG. 1 illustrates an exem-
plary parallel computer for providing point to point data
communications among compute nodes in a global combin-
ing network according to embodiments of the present inven-
tion. The system of FIG. 1 includes a parallel computer (100),
non-volatile memory for the computer in the form of data
storage device (118), an output device for the computer in the
form of printer (120), and an input/output device for the
computer in the form of computer terminal (122). Parallel
computer (100) in the example of FIG. 1 includes a plurality
of compute nodes (102).

Each compute node (102) of FIG. 1 may include a plurality
of processors for use in executing an application on the par-
allel computer (100) according to embodiments of the present
invention. The processors of each compute node (102) in FIG.
1 are operatively coupled to computer memory such as, for
example, random access memory (‘RAM”). Each compute
node (102) may operate in several distinct modes that affect
the relationship among the processors and the memory on that
node such as, for example, serial processing mode or parallel
processing mode. The mode in which the compute nodes
operate is generally set during the node’s boot processes and
does not change until the node reboots.

In serial processing mode, often referred to a “virtual node
mode,” the processors of a compute node operate indepen-
dently of one another, and each processor has access to a
partition of the node’s total memory that is exclusively dedi-
cated to that processor. For example, if a compute node has
four processors and two Gigabytes (GB) of RAM, when
operating in serial processing mode, each processor may pro-
cess a thread independently of the other processors on that
node, and each processor may access a 512 Megabyte (MB)
portion of that node’s total 2 GB of RAM.

In parallel processing mode, often referred to as ‘symmet-
ric multi-processing mode,” one of the processors acts as a
master, and the remaining processors serve as slaves to the
master processor. Each processor has access to the full range
of computer memory on the compute node. Continuing with
the exemplary node above having four processors and 2 GB of
RAM, for example, each slave processor may cooperatively

US 9,246,792 B2

5

process threads spawned from the master processor, and all of
the processors have access to the node’s entire 2 GB of RAM.

The compute nodes (102) are coupled for data communi-
cations by several independent data communications net-
works including a Joint Test Action Group (‘JTAG’) network
(104), a global combining network (106) which is optimized
for collective operations, and a point to point network (108)
which is optimized point to point operations. The global
combining network (106) is a data communications network
that includes data communications links connected to the
compute nodes so as to organize the compute nodes in a tree
topology. Hach data communications network is imple-
mented with network links among the compute nodes (102).
Each network link includes a physical transmission pathway
between two adjacent compute nodes in network topology.
That is, a network link directly connects two adjacent com-
pute nodes in the network topology without the use of any
intervening nodes. The network links provide data commu-
nications for parallel operations among the compute nodes of
the parallel computer. The links between compute nodes are
bi-directional links that are typically implemented using two
separate directional data communications paths.

In addition, the compute nodes (102) of parallel computer
are organized into at least one operational group (132) of
compute nodes for collective parallel operations on parallel
computer (100). An operational group of compute nodes is
the set of compute nodes upon which a collective parallel
operation executes. Collective operations are implemented
with data communications among the compute nodes of an
operational group. Collective operations are those functions
that involve all the compute nodes of an operational group. A
collective operation is an operation, a message-passing com-
puter program instruction that is executed simultaneously,
that is, at approximately the same time, by all the compute
nodes in an operational group of compute nodes. Such an
operational group may include all the compute nodes in a
parallel computer (100) or a subset all the compute nodes.
Collective operations are often built around point to point
operations. A collective operation requires that all processes
on all compute nodes within an operational group call the
same collective operation with matching arguments. A
‘broadcast’ is an example ofa collective operation for moving
data among compute nodes of an operational group. A
‘reduce’ operation is an example of a collective operation that
executes arithmetic or logical functions on data distributed
among the compute nodes of an operational group. An opera-
tional group may be implemented as, for example, an MPI
‘communicator.

‘MPI’” refers to ‘Message Passing Interface,” a prior art
parallel communications library, a module of computer pro-
gram instructions for data communications on parallel com-
puters. Examples of prior-art parallel communications librar-
ies that may be improved for use with systems according to
embodiments of the present invention include MPI and the
‘Parallel Virtual Machine’ (‘PVM”) library. PVM was devel-
oped by the University of Tennessee, The Oak Ridge National
Laboratory, and Emory University. MPI is promulgated by
the MPI Forum, an open group with representatives from
many organizations that define and maintain the MPI stan-
dard. MPI at the time of this writing is a de facto standard for
communication among compute nodes running a parallel pro-
gram on a distributed memory parallel computer. This speci-
fication sometimes uses MPI terminology for ease of expla-
nation, although the use of MPI as such is not a requirement
or limitation of the present invention.

Some collective operations have a single originating or
receiving process running on a particular compute node in an

20

25

40

45

o
o

6

operational group. For example, in a ‘broadcast’ collective
operation, the process on the compute node that distributes
the data to all the other compute nodes is an originating
process. In a ‘gather’ operation, for example, the process on
the compute node that received all the data from the other
compute nodes is a receiving process. The compute node on
which such an originating or receiving process runs is
referred to as a logical root.

Most collective operations are variations or combinations
of four basic operations: broadcast, gather, scatter, and
reduce. The interfaces for these collective operations are
defined in the MPI standards promulgated by the MPI Forum.
Algorithms for executing collective operations, however, are
not defined in the MPI standards. In a broadcast operation, all
processes specify the same root process, whose buffer con-
tents will be sent. Processes other than the root specify receive
buffers. After the operation, all buffers contain the message
from the root process.

In a scatter operation, the logical root divides data on the
root into segments and distributes a different segment to each
compute node in the operational group. In scatter operation,
all processes typically specify the same receive count. The
send arguments are only significant to the root process, whose
buffer actually contains sendcount®N elements of a given
data type, where N is the number of processes in the given
group of compute nodes. The send buffer is divided and
dispersed to all processes (including the process on the logi-
cal root). Each compute node is assigned a sequential identi-
fier termed a ‘rank.” After the operation, the root has sent
sendcount data elements to each process in increasing rank
order. Rank O receives the first sendcount data elements from
the send buffer. Rank 1 receives the second sendcount data
elements from the send buffer, and so on.

A gather operation is a many-to-one collective operation
that is a complete reverse of the description of the scatter
operation. That is, a gather is a many-to-one collective opera-
tion in which elements of a datatype are gathered from the
ranked compute nodes into a receive buffer in a root node.

A reduce operation is also a many-to-one collective opera-
tion that includes an arithmetic or logical function performed
on two data elements. All processes specify the same ‘count’
and the same arithmetic or logical function. After the reduc-
tion, all processes have sent count data elements from com-
puter node send buffers to the root process. In a reduction
operation, data elements from corresponding send buffer
locations are combined pair-wise by arithmetic or logical
operations to yield a single corresponding element in the root
process’s receive buffer. Application specific reduction
operations can be defined at runtime. Parallel communica-
tions libraries may support predefined operations. MPI, for
example, provides the following pre-defined reduction opera-
tions:

MPI_MAX maximum
MPI_MIN minimum
MPI_SUM sum

MPI_PROD product
MPI_LAND logical and
MPI_BAND bitwise and
MPI_LOR logical or
MPI_BOR bitwise or
MPI_LXOR logical exclusive or
MPI_BXOR bitwise exclusive or

In addition to compute nodes, the parallel computer (100)
includes input/output (‘1/0’) nodes (110, 114) coupled to
compute nodes (102) through the global combining network

US 9,246,792 B2

7

(106). The /O nodes (110, 114) provide I/O services between
compute nodes (102) and 1/O devices (118, 120, 122). /O
nodes (110, 114) are connected for data communications I/O
devices (118, 120, 122) through local area network (‘LAN”)
(130) implemented using high-speed Ethernet. The parallel
computer (100) also includes a service node (116) coupled to
the compute nodes through one of the networks (104). Ser-
vice node (116) provides services common to pluralities of
compute nodes, administering the configuration of compute
nodes, loading programs into the compute nodes, starting
program execution on the compute nodes, retrieving results of
program operations on the computer nodes, and so on. Ser-
vice node (116) runs a service application (124) and commu-
nicates with users (128) through a service application inter-
face (126) that runs on computer terminal (122).

As described in more detail below in this specification, the
parallel computer (100) in FIG. 1 includes computer program
instructions for providing point to point data communications
among compute nodes (102) in a global combining network
(106) of the parallel computer (100) according to embodi-
ments of the present invention. Each compute node (102) of
FIG. 1 is connected to each adjacent compute node in the
global combining network (106) through a network link. The
parallel computer (100) of FIG. 1 provides point to point data
communications among compute nodes (102) in a global
combining network (106) of the parallel computer (100)
according to embodiments of the present invention as fol-
lows: The parallel computer (100) determines, from among a
plurality of class route identifiers for each of the compute
nodes along a communications path from an origin compute
node to a target compute node in the network, a class route
identifier available for all of the compute nodes along the
communications path. The parallel computer (100) config-
ures network hardware of each compute node along the com-
munications path with routing instructions in dependence
upon the available class route identifier and a network topol-
ogy for the network. The routing instructions for each com-
pute node associate the available class route identifier with
the network links between that compute node and each com-
pute node adjacent to that compute node along the commu-
nications path. The origin compute node transmits a network
packet to the target compute node along the communications
path, which includes encoding the available class route iden-
tifier in a network packet. The network hardware of each
compute node along the communications path routes the net-
work packet to the target compute node in dependence upon
the routing instructions for the network hardware of each
compute node and the available class route identifier encoded
in the network packet. Readers will note that the origin com-
pute node is a compute node attempting to transmit a network
packet, while the target compute node is a compute node
intended as the final recipient of the network packet.

A class route identifier is an identifier that specifies a set of
routing instructions for use by a compute node in routing a
particular network packet in the global combining network
(106). Typically, when a compute node receives a network
packet, the network hardware of the compute node identifies
the class route identifier from the header of the packet and
then routes the packet according to the routing instructions
associated with that particular class route identifier. Using
different class route identifiers, therefore, a compute node
may route network packets using different sets of routing
instructions. The number of class route identifiers that each
compute node is capable of utilizing is finite and typically
depends on the number of bits allocated for storing the class
route identifier. An ‘available’ class route identifier is a class
route identifier that is not actively utilized by the network

10

15

20

25

30

35

40

45

50

55

60

65

8

hardware of a compute node to route network packets. For
example, a compute node may be capable of utilizing sixteen
class route identifiers labeled 0-15, but only actively utilize
class route identifiers 0 or 1. To deactivate the remaining class
route identifiers, the compute node may disassociate each of
the available class route identifiers with any routing instruc-
tions or maintain a list of the available class route identifiers
in memory.

Routing instructions specify the manner in which a com-
pute node routes packets for a particular class route identifier.
Using different routing instructions for different class route
identifiers, a compute node may route different packets
according to different routing instructions. For example, for
one class route identifier, a compute node may route packets
specifying that class route identifier to a particular adjacent
compute node. For another class route identifier, the compute
node may route packets specifying that class route identifier
to different adjacent compute node. In such a manner, two
different routing configurations may exist among the same
compute nodes on the same physical network.

The communications path along which the origin compute
node communicates with the target compute node is a set of
compute nodes and network links between those compute
nodes that relay communications between the origin compute
node and the target compute node. While the terminal nodes
of'the communications path are the origin compute node and
the target compute node, the compute nodes along the com-
munications path that relay communications between the ori-
gin compute node and the target compute node are referred to
as ‘intervening compute nodes.’

As mentioned above, routing of the network packet accord-
ing to embodiments of the present invention is carried out by
the network hardware of each compute node along the com-
munications path. The network hardware of each compute
node includes the node’s network adapter or other specialized
hardware that provides an interface for the network to the
compute node’s processors.

The arrangement of nodes, networks, and I/O devices mak-
ing up the exemplary system illustrated in FIG. 1 are for
explanation only, not for limitation of the present invention.
Data processing systems capable of providing point to point
data communications among compute nodes in a global com-
bining network of a parallel computer according to embodi-
ments of the present invention may include additional nodes,
networks, devices, and architectures, not shown in FIG. 1, as
will occur to those of skill in the art. Although the parallel
computer (100) in the example of FIG. 1 includes sixteen
compute nodes (102), readers will note that parallel comput-
ers capable of determining when a set of compute nodes
participating in a barrier operation are ready to exit the barrier
operation according to embodiments of the present invention
may include any number of compute nodes. In addition to
Ethernet and JTAG, networks in such data processing systems
may support many data communications protocols including
for example TCP (Transmission Control Protocol), IP (Inter-
net Protocol), and others as will occur to those of skill in the
art. Various embodiments of the present invention may be
implemented on a variety of hardware platforms in addition to
those illustrated in FIG. 1.

Providing point to point data communications among com-
pute nodes in a global combining network of a parallel com-
puter according to embodiments of the present invention may
be generally implemented on a parallel computer that
includes a plurality of compute nodes. In fact, such computers
may include thousands of such compute nodes. Each compute
node is in turn itself a kind of computer composed of one or
more computer processors (or processing cores), its own

US 9,246,792 B2

9

computer memory, and its own input/output adapters. For
further explanation, therefore, FIG. 2 sets forth a block dia-
gram of an exemplary compute node useful in a parallel
computer capable of providing point to point data communi-
cations among compute nodes in a global combining network
according to embodiments ofthe present invention. The com-
pute node (152) of FIG. 2 includes one or more processing
cores (164) as well as random access memory (‘RAM”) (156).
The processing cores (164) are connected to RAM (156)
through a high-speed memory bus (154) and through a bus
adapter (194) and an extension bus (168) to other components
of'the compute node (152). Stored in RAM (156) is an appli-
cation program (158), a module of computer program instruc-
tions that carries out parallel, user-level data processing using
parallel algorithms.

Also stored in RAM (156) is a messaging module (160), a
library of computer program instructions that carry out par-
allel communications among compute nodes, including point
to point operations as well as collective operations. Applica-
tion program (158) executes collective operations by calling
software routines in the messaging module (160). A library of
parallel communications routines may be developed from
scratch for use in systems according to embodiments of the
present invention, using a traditional programming language
such as the C programming language, and using traditional
programming methods to write parallel communications rou-
tines that send and receive data among nodes on two inde-
pendent data communications networks. Alternatively, exist-
ing prior art libraries may be improved to operate according to
embodiments of the present invention. Examples of prior-art
parallel communications libraries include the ‘Message Pass-
ing Interface’ (‘MPI’) library and the ‘Parallel Virtual
Machine’ (‘PVM’) library.

Also stored in RAM (156) is an operating system (162), a
module of computer program instructions and routines for an
application program’s access to other resources of the com-
pute node. It is typical for an application program and parallel
communications library in a compute node of a parallel com-
puter to run a single thread of execution with no user login and
no security issues because the thread is entitled to complete
access to all resources of the node. The quantity and com-
plexity of tasks to be performed by an operating system on a
compute node in a parallel computer therefore are smaller and
less complex than those of an operating system on a serial
computer with many threads running simultaneously. In addi-
tion, there is no video I/O on the compute node (152) of FIG.
2, another factor that decreases the demands on the operating
system. The operating system may therefore be quite light-
weight by comparison with operating systems of general
purpose computers, a pared down version as it were, or an
operating system developed specifically for operations on a
particular parallel computer. Operating systems that may use-
fully be improved, simplified, for use in a compute node
include UNIX™, Linux™, Microsoft XP™, AIX™ [BM’s
15/0S™ and others as will occur to those of skill in the art.

The exemplary compute node (152) of FIG. 2 includes
several communications adapters (172, 176, 180, 188) for
implementing data communications with other nodes of a
parallel computer. Such data communications may be carried
out serially through RS-232 connections, through external
buses such as Universal Serial Bus (‘USB’), through data
communications networks such as IP networks, and in other
ways as will occur to those of skill in the art. Communications
adapters implement the hardware level of data communica-
tions through which one computer sends data communica-
tions to another computer, directly or through a network.

10

15

20

25

30

35

40

45

50

55

60

65

10

Examples of communications adapters useful in systems for
providing point to point data communications among com-
pute nodes in a global combining network of a parallel com-
puter according to embodiments of the present invention
include modems for wired communications, Ethernet (IEEE
802.3) adapters for wired network communications, and
802.11b adapters for wireless network communications.

The data communications adapters in the example of FIG.
2 include a Gigabit Ethernet adapter (172) that couples
example compute node (152) for data communications to a
Gigabit Ethernet (174). Gigabit Ethernet is a network trans-
mission standard, defined in the IEEE 802.3 standard, that
provides a data rate of 1 billion bits per second (one gigabit).
Gigabit Ethernet is a variant of Ethernet that operates over
multimode fiber optic cable, single mode fiber optic cable, or
unshielded twisted pair.

The data communications adapters in the example of FIG.
2 includes a JTAG Slave circuit (176) that couples example
compute node (152) for data communications to a JTAG
Master circuit (178). JTAG is the usual name used for the
IEEE 1149.1 standard entitled Standard Test Access Port and
Boundary-Scan Architecture for test access ports used for
testing printed circuit boards using boundary scan. JTAG is so
widely adapted that, at this time, boundary scan is more or
less synonymous with JTAG. JTAG is used not only for
printed circuit boards, but also for conducting boundary scans
of integrated circuits, and is also useful as a mechanism for
debugging embedded systems, providing a convenient “back
door” into the system. The example compute node of FIG. 2
may be all three of these: It typically includes one or more
integrated circuits installed on a printed circuit board and may
be implemented as an embedded system having its own pro-
cessor, its own memory, and its own /O capability. JTAG
boundary scans through JTAG Slave (176) may efficiently
configure processor registers and memory in compute node
(152) for use in providing point to point data communications
among compute nodes in a global combining network of a
parallel computer according to embodiments of the present
invention.

The data communications adapters in the example of FIG.
2 includes a Point To Point Adapter (180) that couples
example compute node (152) for data communications to a
network (108) that is optimal for point to point message
passing operations such as, for example, a network config-
ured as a three-dimensional torus or mesh. Point To Point
Adapter (180) provides data communications in six direc-
tions on three communications axes, X, y, and z, through six
bidirectional links: +x (181), —x (182), +y (183), -y (184), +z
(185), and -z (186).

The data communications adapters in the example of FIG.
2 includes a Global Combining Network Adapter (188) that
couples example compute node (152) for data communica-
tions to a network (106) that is optimal for collective message
passing operations on a global combining network config-
ured, for example, as a binary tree. The Global Combining
Network Adapter (188) provides data communications
through three bidirectional links: two to children nodes (190)
and one to a parent node (192).

Example compute node (152) includes two arithmetic
logic units (‘ALUs’). ALU (166) is a component of each
processing core (164), and a separate ALU (170) is dedicated
to the exclusive use of Global Combining Network Adapter
(188) for use in performing the arithmetic and logical func-
tions of reduction operations. Computer program instructions
of a reduction routine in parallel communications library
(160) may latch an instruction for an arithmetic or logical
function into instruction register (169). When the arithmetic

US 9,246,792 B2

11

or logical function of a reduction operation is a ‘sum’ or a
‘logical or,” for example, Global Combining Network Adapter
(188) may execute the arithmetic or logical operation by use
of ALU (166) in processor (164) or, typically much faster, by
use dedicated ALU (170).

The example compute node (152) of FIG. 2 includes a
direct memory access (‘DMA’) controller (195), which is
computer hardware for direct memory access and a DMA
engine (197), which is computer software for direct memory
access. In the example of FIG. 2, the DMA engine (197) is
configured in computer memory of the DMA controller
(195). Direct memory access includes reading and writing to
memory of compute nodes with reduced operational burden
on the central processing units (164). A DMA transfer essen-
tially copies a block of memory from one location to another,
typically from one compute node to another. While the CPU
may initiate the DMA transfer, the CPU does not execute it.

As mentioned above, the compute node (152) of FIG. 2 is
useful in a parallel computer capable providing point to point
data communications among compute nodes in a global com-
bining network according to embodiments of the present
invention. In such a parallel computer according to embodi-
ments of the present invention, each compute node is con-
nected to each adjacent compute node in the global combin-
ing network through a network link such as, for example, the
bidirectional links to parent node (192) and child nodes (190).
The parallel computer operates generally for providing point
to point data communications among compute nodes in a
global combining network according to embodiments of the
present invention by: determining, from among a plurality of
class route identifiers for each of the compute nodes along a
communications path from an origin compute node to a target
compute node in the network, a class route identifier available
for all of the compute nodes along the communications path;
configuring network hardware (200) of each compute node
along the communications path with routing instructions in
dependence upon the available class route identifier and a
network topology for the network (106), the routing instruc-
tions for each compute node associating the available class
route identifier with the network links between that compute
node and each compute node adjacent to that compute node
along the communications path; transmitting, by the origin
compute node along the communications path, a network
packet to the target compute node, including encoding the
available class route identifier in a network packet; and rout-
ing, by the network hardware of each compute node along the
communications path, the network packet to the target com-
pute node in dependence upon the routing instructions for the
network hardware (200) of each compute node and the avail-
able class route identifier encoded in the network packet.

For further explanation, FIG. 3A illustrates an exemplary
Point To Point Adapter (180) useful in a parallel computer
capable of providing point to point data communications
among compute nodes in a global combining network accord-
ing to embodiments of the present invention. Point To Point
Adapter (180) is designed for use in a data communications
network optimized for point to point operations, a network
that organizes compute nodes in a three-dimensional torus or
mesh. Point To Point Adapter (180) in the example of FIG. 3A
provides data communication along an x-axis through four
unidirectional data communications links, to and from the
next node in the —x direction (182) and to and from the next
node in the +x direction (181). Point To Point Adapter (180)
also provides data communication along a y-axis through
four unidirectional data communications links, to and from
the next node in the -y direction (184) and to and from the
next node in the +y direction (183). Point To Point Adapter

10

15

20

25

30

35

40

45

50

55

60

65

12

(180) in FIG. 3A also provides data communication along a
z-axis through four unidirectional data communications
links, to and from the next node in the -z direction (186) and
to and from the next node in the +z direction (185).

For further explanation, FIG. 3B illustrates an exemplary
Global Combining Network Adapter (188) useful in a parallel
computer capable of providing point to point data communi-
cations among compute nodes in a global combining network
according to embodiments of the present invention. Global
Combining Network Adapter (188) is designed for use in a
network optimized for collective operations, a network that
organizes compute nodes of a parallel computer in a binary
tree. Global Combining Network Adapter (188) in the
example of FIG. 3B provides data communication to and
from two children nodes (190) through two links. Each link to
each child node (190) is formed from two unidirectional data
communications paths. Global Combining Network Adapter
(188) also provides data communication to and from a parent
node (192) through a link form from two unidirectional data
communications paths.

For further explanation, FIG. 4 sets forth a line drawing
illustrating an exemplary data communications network
(108) optimized for point to point operations useful in a
parallel computer capable of providing point to point data
communications among compute nodes in a global combin-
ing network in accordance with embodiments of the present
invention. In the example of FIG. 4, dots represent compute
nodes (102) of a parallel computer, and the dotted lines
between the dots represent network links (103) between com-
pute nodes. The network links are implemented with point to
point data communications adapters similar to the one illus-
trated for example in FIG. 3A, with network links on three
axes, X, y, and z, and to and from in six directions +x (181), -x
(182), +y (183), —y (184), +z (185), and -z (186). The links
and compute nodes are organized by this data communica-
tions network optimized for point to point operations into a
three dimensional mesh (105). The mesh (105) has wrap-
around links on each axis that connect the outermost compute
nodes in the mesh (105) on opposite sides of the mesh (105).
These wrap-around links form part of a torus (107). Each
compute node in the torus has a location in the torus that is
uniquely specified by a set of X, y, z coordinates. Readers will
note that the wrap-around links in the y and z directions have
been omitted for clarity, but are configured in a similar man-
ner to the wrap-around link illustrated in the x direction. For
clarity of explanation, the data communications network of
FIG. 4 is illustrated with only 27 compute nodes, but readers
will recognize that a data communications network optimized
for point to point operations for use in providing point to point
data communications among compute nodes in a global com-
bining network of a parallel computer in accordance with
embodiments of the present invention may contain only a few
compute nodes or may contain thousands of compute nodes.

For further explanation, FIG. 5 sets forth a line drawing
illustrating an exemplary data communications network
(106) optimized for collective operations useful in a parallel
computer capable of providing point to point data communi-
cations among compute nodes in a global combining network
in accordance with embodiments of the present invention.
The example data communications network of FIG. 5
includes network links connected to the compute nodes so as
to organize the compute nodes as a tree. In the example of
FIG. 5, dots represent compute nodes (102) of a parallel
computer, and the dotted lines (103) between the dots repre-
sent network links between compute nodes. The network
links are implemented with global combining network adapt-
ers similar to the one illustrated for example in FIG. 3B, with

US 9,246,792 B2

13

each node typically providing data communications to and
from two children nodes and data communications to and
from a parent node, with some exceptions. Nodes in a binary
tree (106) may be characterized as a physical root node (202),
branch nodes (204), and leafnodes (206). The root node (202)
has two children but no parent. The leaf nodes (206) each has
a parent, but leaf nodes have no children. The branch nodes
(204) each has both a parent and two children. The links and
compute nodes are thereby organized by this data communi-
cations network optimized for collective operations into a
binary tree (106). For clarity of explanation, the data commu-
nications network of FIG. 5 is illustrated with only 31 com-
pute nodes, but readers will recognize that a data communi-
cations network optimized for collective operations for use in
a parallel computer for providing nearest neighbor point-to-
point communications among compute nodes of an opera-
tional group in a global combining network accordance with
embodiments of the present invention may contain only a few
compute nodes or may contain thousands of compute nodes.

In the example of FIG. 5, each node in the tree is assigned
a unit identifier referred to as a ‘rank’ (250). A node’s rank
uniquely identifies the node’s location in the tree network for
use in both point to point and collective operations in the tree
network. The ranks in this example are assigned as integers
beginning with 0 assigned to the root node (202), 1 assigned
to the first node in the second layer of the tree, 2 assigned to
the second node in the second layer of the tree, 3 assigned to
the first node in the third layer of the tree, 4 assigned to the
second node in the third layer of the tree, and so on. For ease
ofillustration, only the ranks of the first three layers of the tree
are shown here, but all compute nodes in the tree network are
assigned a unique rank.

For further explanation, FIG. 6 sets forth a flow chart
illustrating an exemplary method for providing point to point
data communications among compute nodes in a global com-
bining network of a parallel computer according to embodi-
ments the present invention. Each compute node described
with reference to FIG. 6 is connected to each adjacent com-
pute node in the global combining network through a network
link.

The method of FIG. 6 includes determining (600), from
among a plurality of class route identifiers for each of the
compute nodes along a communications path from an origin
compute node to a target compute node in the network, a class
route identifier (618) available for all of the compute nodes
along the communications path. Determining (600) a class
route identifier (618) available for all of the compute nodes
along the communications path according to the method of
FIG. 6 includes encoding (602), by the origin compute node,
areservation packet (604) with a current requested class route
identifier (606) and sending (608), by the origin compute
node, the reservation packet (604) to the compute nodes along
the communications path. The origin compute node may
encode (602) the reservation packet (604) with the current
requested class route identifier (606) according to the method
of FIG. 6 by selecting the lowest numbered class route iden-
tifier not actively being used by the origin compute node. The
origin compute node may identify the lowest numbered class
route identifier not actively being used by the origin compute
node using a class route availability table. The class route
availability table is a data structure maintained by each com-
pute node that specifies whether each class route identifier for
a compute node is currently inactive and available for use by
the compute node.

Determining (600) a class route identifier (618) available
for all of the compute nodes along the communications path

20

25

3

<

35

40

45

50

55

60

o

5

14

according to the method of FIG. 6 also includes for (610) each
compute node along the communications path receiving the
reservation packet (604):
determining (612) whether the current requested class
route identifier (606) is available for that compute node;
updating (614) the reservation packet (604) with a new
requested class route identifier (606) if the current
requested class route identifier (606) is not available for
that compute node; and
forwarding (616) the reservation packet (604) to the
remaining compute nodes along the communications
path.

Each compute node along the communications path may
determine (612) whether the current requested class route
identifier (606) is available for that compute node according
to the method of FIG. 6 by looking up the availability of the
current requested class route identifier (606) in the class route
availability table for that compute node. If the class route
availability table indicates that the current requested class
route identifier (606) is currently inactive, then the current
requested class route identifier (606) is available for that
compute node. If the class route availability table indicates
that the current requested class route identifier (606) is not
currently inactive, then the current requested class route iden-
tifier (606) is not available for that compute node.

If the current requested class route identifier (606) is not
available for one of the compute nodes along the communi-
cations path, that compute node may update (614) the reser-
vation packet (604) with anew requested class route identifier
(606) according to the method of FIG. 6 by selecting the next
higher numbered class route identifier that is available for that
compute node and replacing the current value for the
requested class route identifier (606) with a value for the next
highest numbered class route identifier that is available. Each
compute node may then forward (616) the reservation packet
(604) to the remaining compute nodes along the communica-
tions path according to the method of FIG. 6 until the reser-
vation packet reaches the target compute node.

From the description above, readers will note that each
compute node must have some mechanism in place that
allows the compute nodes along the communications path to
update and forward the reservation packet to one another. The
mechanism used by each compute node along the communi-
cations path may be implemented as a forwarding table. For
further explanation of how the compute nodes may generate
forwarding tables, FIG. 7A sets forth a line drawing illustrat-
ing an exemplary global combining network useful in a par-
allel computer capable of providing point to point data com-
munications among compute nodes in the global combining
network according to embodiments the present invention.
The global combining network (106) organizes the compute
nodes in a tree topology.

The global combining network (106) in the example of
FIG. 7A connects the compute nodes ‘0, ‘1, <2 ‘3, ‘4, ‘5’
and “6’ together for data communications. Each child node in
the tree network (106) is connected to its parent node through
a link (103) that provides bi-directional data communica-
tions. In the example of FIG. 7A, compute node ‘0’ connects
to compute node ‘1’ through a link identified on each node as
link ‘B.” Compute node ‘1’ connects to compute node ‘3’
through a link identified on each node as link ‘A.’” Compute
node ‘1’ connects to compute node ‘4’ through a link identi-
fied on each node as link ‘C.” Compute node ‘0’ connects to
compute node ‘2’ through a link identified on each node as
link ‘C.” Compute node ‘2’ connects to compute node ‘5’

US 9,246,792 B2

15
through a link identified on each node as link ‘A.” Compute
node ‘2’ connects to compute node ‘6’ through a link identi-
fied on each node as link ‘B.

In the example of FIG. 7A, the parallel computer deter-
mines a network topology for the compute nodes in the global
combining network (106). The network topology specifies
arrangement of the compute nodes in the network (106) and
the links (103) in the network (106) used to connect the
compute nodes. The parallel computer may determine the
network topology for the compute nodes of the operational
group in the global combining network (106) using a depth
first search. A depth first search is an algorithm for traversing
atree structure that explores as far as possible along a branch
of'the tree until a node with no children is identified and then
backtracks, returning to the most recently traversed node
having another unexplored branch. Consider, for example,
the global combining network (106) in the example of FIG.
7A in which the parallel computer performs a depth first
search through the global combining network (106) starting
with the compute node “0.” In such an example, the parallel
computer traverses from compute node ‘0’ to compute node
‘1’ and then to compute node ‘3. Upon reaching compute
node 3, the parallel computer backtracks to compute node
‘1’ and traverses to compute node ‘4.’ Upon reaching compute
node ‘4,” the parallel computer backtracks to compute node
0’ and traverses to compute node ‘2.” The parallel computer
then traverses to compute node ‘5.” Upon reaching compute
node 5, the parallel computer backtracks to compute node
2’ and traverses to compute node ‘6.

After determining a network topology for the compute
nodes of the operational group in the global combining net-
work (106), the parallel computer may creates a forwarding
table that associates one of the links for the compute node
along which to forward network packets to each of the other
compute nodes in the operational group using the network
topology. Each compute node may use its forwarding table to
select one of the links for the compute node along which to
forward the network packet toward its destination compute
node.

For further explanation of a forwarding table, FIG. 7B sets
forth a line drawing illustrating an exemplary forwarding
table useful in a parallel computer capable of providing point
to point data communications among compute nodes in a
global combining network according to embodiments the
present invention. The parallel computer creates the exem-
plary forwarding table in FIG. 7B for compute node ‘1’ in the
example of FIG. 7A in dependence upon the network topol-
ogy for the global combining network of FIG. 7A. The exem-
plary forwarding table of FIG. 7B associates one of the links
for compute node ‘1’ along which to forward network packets
to each of the other compute nodes in the network. The
exemplary forwarding table for compute node ‘1’ associates a
destination node identifier of ‘0’ with link identifier ‘B,
which specifies forwarding network packets destined for
compute node ‘0’ along link ‘B’ of compute node ‘1. The
exemplary forwarding table for compute node ‘1’ associates a
destination node identifier of ‘2’ with link identifier ‘B,
which specifies forwarding network packets destined for
compute node ‘2’ along link ‘B’ of compute node ‘1. The
exemplary forwarding table for compute node ‘1’ associates a
destination node identifier of ‘3> with link identifier ‘A’
which specifies forwarding network packets destined for
compute node ‘3’ along link ‘A’ of compute node ‘1. The
exemplary forwarding table for compute node ‘1’ associates a
destination node identifier of ‘4> with link identifier ‘C,
which specifies forwarding network packets destined for
compute node ‘4’ along link ‘C’ of compute node ‘1.’ The

10

15

20

25

30

40

45

50

55

60

65

16

exemplary forwarding table for compute node ‘1’ associates a
destination node identifier of ‘5’ with link identifier ‘B,
which specifies forwarding network packets destined for
compute node ‘5’ along link ‘B’ of compute node ‘1. The
exemplary forwarding table for compute node ‘1’ associates a
destination node identifier of ‘6’ with link identifier ‘B,
which specifies forwarding network packets destined for
compute node ‘6’ along link ‘B’ of compute node ‘1.

Readers will recall from the discussion above with refer-
ence to FIG. 6 that each compute node along the communi-
cations path receiving the reservation packet (604) may deter-
mine (612) whether the current requested class route
identifier (606) is available for that compute node using a
class route availability table. For further explanation, there-
fore, FIG. 8 sets forth a line drawing illustrating exemplary
class route availability tables useful in a parallel computer
capable of providing point to point data communications
among compute nodes in a global combining network accord-
ing to embodiments the present invention. The global com-
bining network (106) in the example of FIG. 8 connects the
computenodes “0,” ‘1, 2,3, ‘4, *5.” and ‘6’ together for data
communications in a tree topology. Each child node in the
tree network (106) is connected to its parent node through a
link illustrated in FIG. 8 as a double ended arrow. Each link
provides bi-directional data communications.

Each compute node includes a class route availability table
(800). Each class route availability table (800) specifies
whether each class route identifier for a compute node is
currently inactive and available for use by the compute node.
As each compute node along the communications path
receives the reservation packet from the origin compute node,
each compute node may use its class route availability table
(800) to determine whether the current requested class route
identifier is available for that compute node. For example,
consider FIG. 8 in which compute node 3 is the origin com-
pute node, compute node 6 is the target compute node, and the
dotted arrow represents the data communications path
between the origin compute node and target compute node. In
the example of FIG. 8, the class route availability table (800)
for node 3 indicates that all of the class route identifiers are
available for use by node 3. Node 3 may therefore encode the
lowest available class route, class route identifier 1, in a
reservation packet as the requested class route identifier and
forward the reservation packet to node 1. Upon receiving the
reservation packet, node 1 uses its class route availability
table to determine that the requested class route identifier 1 is
not available. Thus, node 1 updates the reservation packet
with a new requested class route identifier—the next higher
available class route identifier 2—and forwards the reserva-
tion packet to node 0. Upon receiving the reservation packet,
node 0 uses its class route availability table to determine that
the requested class route identifier 2 is available and forwards
the reservation packet along to node 2 without updating the
requested class route identifier. Upon receiving the reserva-
tion packet, node 2 uses its class route availability table to
determine that the requested class route identifier 2 is not
available. Thus, node 2 updates the reservation packet with a
new requested class route identifier—the next higher avail-
able class route identifier 4—and forwards the reservation
packet to node 6. Upon receiving the reservation packet, node
6 uses its class route availability table to determine that the
requested class route identifier 4 is available. Target node 6
then forwards the reservation packet back to the compute
nodes along the communications path to inform those com-
pute node that class route identifier 4 is the class route iden-
tifier available for all of the compute node along the commu-
nications path.

US 9,246,792 B2

17

Turning back to FIG. 6: as the reservation packet travels
along the communications path from the target compute node
to the origin compute node, each compute node configures
that node’s network hardware with routing instructions based
on the available class route identifier (618). Accordingly, the
method of FIG. 6 includes configuring (620) network hard-
ware of each compute node along the communications path
with routing instructions in dependence upon the available
class route identifier (618) and a network topology (619) for
the network. Configuring (620) network hardware of each
compute node along the communications path with routing
instructions according to the method of FIG. 6 includes send-
ing (622), by the target compute node, the reservation packet
(604) to the compute nodes along the communications path.
As mentioned above, the routing instructions for each com-
pute node associate the available class route identifier (618)
with the network links between that compute node and each
compute node adjacent to that compute node along the com-
munications path. The network topology (619) of FIG. 6
represents the arrangement of the compute nodes in the net-
work and the links in the network used to connect the compute
nodes.

Configuring (620) network hardware of each compute
node along the communications path with routing instruc-
tions according to the method of FIG. 6 also includes for
(624) each compute node along the communications path
receiving the reservation packet (604):

determining (626) whether the requested class route iden-

tifier (606) specified in the reservation packet (604) is
still available for that compute node;
configuring (628) network hardware of that compute node
with routing instructions that associate the requested
class route identifier (606) specified in the reservation
packet with the network links between that compute
node and each compute node adjacent to that compute
node along the communications path if the requested
class route identifier (606) specified in the reservation
packet (604) is still available for that compute node; and

forwarding (629) the reservation packet (604) to the
remaining compute nodes along the communications
path.

Each compute node along the communications path may
determine (626) whether the requested class route identifier
(606) specified in the reservation packet (604) is still available
for that compute node according to the method of FIG. 6 by
looking up the availability of the requested class route iden-
tifier (606) in the class route availability table for that com-
pute node. Ifthe class route availability table indicates that the
current requested class route identifier (606) is currently inac-
tive, then the current requested class route identifier (606) is
still available for that compute node. If the class route avail-
ability table indicates that the current requested class route
identifier (606) is not currently inactive, then the current
requested class route identifier (606) is not still available for
that compute node. If the current requested class route iden-
tifier (606) is not still available for that compute node, then a
message is sent to the origin compute node to restart the
process of determining (600) a class route identifier that is
available for all of the compute nodes along the communica-
tions path.

If the current requested class route identifier (606) is still
available for the compute nodes along the communications
path, then that compute node may configure (628) network
hardware of that compute node with routing instructions
according to the method of FIG. 6 by inserting values in the
routing registers in the router of the compute node’s network
hardware that give effect to the routing instructions. Each

10

15

20

25

30

35

40

45

50

55

60

65

18

compute node may then forward (629) the reservation packet
(604) to the remaining compute nodes along the communica-
tions path according to the method of FIG. 6 until the reser-
vation packet reaches the origin compute node.

The method of FIG. 6 includes transmitting (630), by the
origin compute node along the communications path, a net-
work packet (634) to the target compute node. The origin
compute node transmits (630) the network packet (634) along
the communications path to the target compute node accord-
ing to the method of FIG. 6 by encoding (632) the available
class route identifier (618) in a network packet (634). The
origin compute node may encode (632) the available class
route identifier (618) in a network packet (634) according to
the method of FIG. 6 by embedding the available class route
identifier (618) in the packet header of the network packet
(634).

The method of FIG. 6 includes routing (636), by the net-
work hardware of each compute node along the communica-
tions path, the network packet (634) to the target compute
node in dependence upon the routing instructions for the
network hardware of each compute node and the available
class route identifier (618) encoded in the network packet
(634). The network hardware for each node routes (636) the
network packet (634) to the target compute node according to
the method of FIG. 6 by receiving the network packet (634),
retrieving the routing instructions associated with the class
route identifier (618) specified by the packet (634), forward-
ing the packets along the network link to the next node along
the communications path according to the retrieved routing
instructions.

Readers will note that although determining (600) the
available class route identifier and configuring (620) network
hardware with class routing instructions utilizes processing
cores of the intervening compute nodes along the communi-
cations path, routing (636) the network packet (634) to the
target compute node does not involve the processing cores of
those intervening compute nodes to route network packets
from the origin node to the target node. The processing cores
of the intervening compute nodes are typically involved in
determining (600) the available class route identifier and con-
figuring (620) network hardware with class routing instruc-
tions in that the processing cores use forwarding tables to
identify the network links along which to forward the reser-
vation packet between the origin node and the target node. In
addition, the processing cores of the intervening compute
nodes also retrieve the available class route identifier from the
reservation packet and set values of the routing registers in the
network hardware. When the processing cores of the inter-
vening nodes configure (620) network hardware with class
routing instructions, however, the routing information
required by intervening compute nodes to route network
packets between the origin node and the target node in a point
to point manner is moved from computer memory—typically
accessed through a processing core—to the network hard-
ware itself where the routing information is utilized by the
network hardware to provide routing functionality without
involving the processing core. Thus, once the network hard-
ware is configured with the routing instructions, point to point
data communications between the origin compute node and
the target compute node according to embodiments of the
present invention may occur without involving the processing
cores of any intervening compute nodes to route network
packets along the data communications path, thereby
decreasing overall transmission latency.

Turning now to illustrate an exemplary manner in which a
parallel computer may configure network hardware of each
compute node along the communications path with routing

US 9,246,792 B2

19

instructions, FIG. 9A sets forth a line drawing illustrating
exemplary routing instructions useful in a parallel computer
capable of providing point to point data communications
among compute nodes in a global combining network accord-
ing to embodiments the present invention. FIG. 9A illustrates
an exemplary global combining network (106) that includes
compute nodes “0,”“1,” ‘2, ‘3, 4, 5. and ‘6’. Each compute
node is connected with each of its respective adjacent com-
pute nodes in the global combining network (106) using a
bi-directional link illustrated as a solid double-ended arrow.

For further explanation of the routing instructions, con-
sider that compute node 3 is an origin compute node, compute
node 6 is a target compute node, and the data communications
path between the target compute node and the origin compute
node is represented using a dotted single-ended arrow. Fur-
ther consider that class route identifier 3 is the class route
identifier available for each of the compute nodes along the
communications path. In the example of FIG. 9A, the parallel
computer configures the network hardware of each compute
node along the communications path with routing instruc-
tions (900) that associate the available class route identifier 3
with the network links between that compute node and each
compute node adjacent to that compute node along the com-
munications path. The parallel computer may configure the
network hardware of each compute node along the commu-
nications path with routing instructions (900) by inserting
values in the routing registers in the router of the compute
node’s network hardware that give effect to the routing
instructions. FIG. 9A illustrates routing instructions (900)
associated with the available class route identifier 3 and used
to provide point to point data communications between origin
node 3 and target node 6.

To aid readers in understanding how routing instructions
configured in routing registers of compute node network
hardware provide point to point data communications among
compute nodes in a global combining network of a parallel
computer according to embodiments of the present invention,
consider FIG. 9B. FIG. 9B sets forth a line drawing illustrat-
ing exemplary network hardware configured with routing
instructions useful in a parallel computer capable of provid-
ing point to point data communications among compute
nodes in a global combining network according to embodi-
ments the present invention.

The compute node (152) of FIG. 9B includes network
hardware (200) in the form of a global combining network
adapter (188) as described above. The network adapter (188)
includes a router (902). The router (902) has a link labeled
“Top’ that links the compute node (152) to its parent in a
global combining network. The router (902) has a link labeled
‘Left’ that links the compute node (152) to its child node
along the left branch in the global combining tree. The router
(902) has a link labeled ‘Right’ that links the compute node
(152) to its child node along the right branch in the global
combining tree. The router (902) also has a link labeled
‘Node’ that links the router to the other components (not
shown) of the compute node (152) such as for example, a
DMA controller, an expansion bus, a processing core, volatile
memory, and so on. Through the ‘Node’ link, the other com-
ponents of the compute node (152) receive and inject packets
onto the global combining network.

The global combining network adapter (188) includes two
routing registers for each class route identifier (904), one
register labeled ‘IN” and the other register labeled ‘OUT.
Each register is four bits in size such that each bit in each
register corresponds to one of the links labeled ‘Top,” ‘Left,
‘Right,” or ‘Node.” In the example of FIG. 9B, the first bit of
each register corresponds to the link labeled ‘“Top.” The sec-
ond bit of each register corresponds to the link labeled ‘Left.’

10

15

20

25

30

35

40

45

50

55

60

20

The third bit of each register corresponds to the link labeled
‘Right.” The fourth bit of each register corresponds to the link
labeled ‘Node.

The network adapter (188) of FIG. 9B includes a router
(902) that receives packets to be routed on a global combining
network that connects the compute node (152) to other com-
pute nodes. When the router (902) of FIG. 9B receives a
packet on a link, the router (902) applies a routing algorithm
to determine the links along which the router (902) should
forward the packet. The routing algorithm used by the router
(902) in the example of FIG. 9B utilizes the routing instruc-
tions stored in the routing registers (704) of the network
adapter (188). The routing algorithm operates generally as
follows:

the router (902) identifies the link on which the router (902)

received a packet for routing,

the router (902) looks up the value for the bit in the ‘IN”

register that corresponds to the link on which the router
received the packet,
if the bit value is zero, then the router (902) forwards the
packet on the links which correspond to the bits in the
‘IN’ register for which the bit value is one, and

if the bit value is one, then the router (902) forwards the
packet on the links which correspond to the bits in the
‘OUT” register for which the bit value is one.

Using the routing algorithm described above, the exem-
plary routing instructions configured in the routing registers
of FIG. 9B specity forwarding a packet along the link labeled
‘Node’ if the packet is received on any of the links labeled
“Top,” ‘Left, or ‘Right.” If the packet is received on the link
labeled ‘Node,” the exemplary routing instructions configured
in the routing register of FIG. 9B specify forwarding the
packet along the link labeled ‘Top’ to the parent node. Read-
ers will note that the exemplary routing instructions (900) and
exemplary class route identifier (904) in FIG. 9B are for
explanation only and not for limitation. Other routing instruc-
tions, class route identifiers, and implementations thereof
may be useful in providing point to point data communica-
tions among compute nodes in a global combining network of
a parallel computer according to embodiments of the present
invention.

The explanation above with reference to FIG. 6 describes
an exemplary embodiment of providing point to point data
communications among compute nodes in a global combin-
ing network of a parallel computer in which the compute
nodes already have a point to point protocol in place for
sending the initial reservation packet to determine the class
route available for each of the compute nodes along the com-
munications path. The point to point protocol in place for
sending the initial reservation packet invokes the processing
cores of each of the intervening compute nodes to route the
reservation packet between the origin compute node and the
target compute node. The processing cores of these interven-
ing nodes then use the available class route identifier in the
reservation packet to configure routing instructions in the
network hardware of the intervening compute nodes. In such
a manner, the information required by an intervening com-
pute node to route network packets from the origin node to the
target node in a point to point manner is moved from com-
puter memory typically accessed through a processing core to
the network hardware where the information is utilized to
provide routing functionality without involving the process-
ing core. In some embodiments, however, the point to point
protocol for sending the initial reservation packet is not
already in place. Thus, the compute nodes along the commu-
nications path cannot use a reservation packet to inform each

US 9,246,792 B2

21

other of'the available class routing identifier. In such embodi-
ments, a reduction operation may be performed to obtain the
class route identifier that is available for all of the compute
nodes along the communications path between an origin node
and a target node. For further explanation, FIG. 10 sets forth
a flow chart illustrating a further exemplary method for pro-
viding point to point data communications among compute
nodes in a global combining network of a parallel computer
according to embodiments the present invention.

The method of FIG. 10 is similar to the method of FIG. 6.
That is, the method of FIG. 10 includes: determining (600),
from among a plurality of class route identifiers for each of
the compute nodes along a communications path from an
origin compute node to a target compute node in the network,
a class route identifier (618) available for all of the compute
nodes along the communications path; configuring (620) net-
work hardware of each compute node along the communica-
tions path with routing instructions in dependence upon the
available class route identifier (618) and a network topology
(619) for the network, the routing instructions for each com-
pute node associating the available class route identifier (618)
with the network links between that compute node and each
compute node adjacent to that compute node along the com-
munications path; transmitting (630), by the origin compute
node along the communications path, a network packet (634)
to the target compute node, including encoding (632) the
available class route identifier in the network packet (634);
and routing (636), by the network hardware of each compute
node along the communications path, the network packet
(634) to the target compute node in dependence upon the
routing instructions for the network hardware of each com-
pute node and the available class route identifier (618)
encoded in the network packet (634).

In the method of FIG. 10, however, determining (600) a
class route identifier (618) available for all of the compute
nodes along the communications path includes selecting
(1000), by each compute node, a requested class route iden-
tifier (606) and performing (1002) an allreduce operation to
obtain the requested class route identifier (606) having the
highest value. Each compute node may select (1000) a
requested class route identifier (606) according to the method
of FIG. 10 by identifying the lowest numbered class route
identifier for that compute node using a class route availabil-
ity table for that compute node. The parallel computer may
perform (1002) the allreduce operation using the origin com-
pute node as the logical root and only including the compute
nodes along the communications path in the allreduce opera-
tion. The network topology (619) of FIG. 10 specifies the
compute nodes along the communications path. The origin
compute node then identifies the requested class route iden-
tifier (606) having the highest value as the available class
route identifier (618).

In the method of FIG. 10, configuring (620) network hard-
ware of each compute node along the communications path
with routing instructions includes configuring (1004) net-
work hardware of each compute node with the routing
instructions that associate the requested class route identifier
(618) having the highest value with the network links
between that compute node and each compute node adjacent
to that compute node along the communications path. Each
compute node may configure (1004) network hardware of
each compute node with the routing instructions according to
the method of FIG. 10 by inserting values in the routing
registers of the compute node’s network hardware that give
effect to the routing instructions. The manner in which values
inserted into the routing registers of each compute node’s

10

15

20

25

30

35

40

45

50

55

60

65

22

network hardware implement the routing instructions is
described above with reference to FIGS. 9A and 9B.
Exemplary embodiments of the present invention are
described largely in the context of a fully functional parallel
computer system for providing point to point data communi-
cations among compute nodes in a global combining network
of a parallel computer. Readers of skill in the art will recog-
nize, however, that the present invention also may be embod-
ied in a computer program product disposed on computer
readable media for use with any suitable data processing
system. Such computer readable media may be transmission
media or recordable media for machine-readable informa-
tion, including magnetic media, optical media, or other suit-
able media. Examples of recordable media include magnetic
disks in hard drives or diskettes, compact disks for optical
drives, magnetic tape, and others as will occur to those of skill
in the art. Examples of transmission media include telephone
networks for voice communications and digital data commu-
nications networks such as, for example, Ethernets™ and
networks that communicate with the Internet Protocol and the
World Wide Web as well as wireless transmission media such
as, for example, networks implemented according to the
IEEE 802.11 family of specifications. Persons skilled in the
art will immediately recognize that any computer system
having suitable programming means will be capable of
executing the steps of the method of the invention as embod-
ied in a program product. Persons skilled in the art will
recognize immediately that, although some of the exemplary
embodiments described in this specification are oriented to
software installed and executing on computer hardware, nev-
ertheless, alternative embodiments implemented as firmware
or as hardware are well within the scope of the present inven-
tion.
It will be understood from the foregoing description that
modifications and changes may be made in various embodi-
ments of the present invention without departing from its true
spirit. The descriptions in this specification are for purposes
of illustration only and are not to be construed in a limiting
sense. The scope of the present invention is limited only by
the language of the following claims.
What is claimed is:
1. A method of providing point to point data communica-
tions among compute nodes in a global combining network of
a parallel computer, each compute node connected to each
adjacent compute node in the global combining network
through a network link, the method comprising:
determining, from among a plurality of class route identi-
fiers for each of the compute nodes along a communi-
cations path from an origin compute node to a target
compute node in the network, a single class route iden-
tifier that is available for each of the compute nodes
along the communications path, the class route identifier
specifying the route between multiple nodes;

configuring network hardware of each compute node along
the communications path with routing instructions in
dependence upon the available class route identifier and
a network topology for the network, the routing instruc-
tions for each compute node associating the available
class route identifier with the network links between that
compute node and each compute node adjacent to that
compute node along the communications path;

transmitting, by the origin compute node along the com-
munications path, a network packet to the target com-
pute node, including encoding the available class route
identifier in the network packet; and

routing, by the network hardware of each compute node

along the communications path, the network packet to

US 9,246,792 B2

23

the target compute node in dependence upon the routing
instructions for the network hardware of each compute
node and the available class route identifier encoded in
the network packet.

2. The method of claim 1 wherein determining, from
among a plurality of class route identifiers for each of the
compute nodes along a communications path from an origin
compute node to a target compute node in the network, a
single class route identifier that is available for each of the
compute nodes along the communications path further com-
prises:

encoding, by the origin compute node, a reservation packet

with a current requested class route identifier;

sending, by the origin compute node, the reservation

packet to the compute nodes along the communications
path; and

for each compute node along the communications path

receiving the reservation packet: determining whether
the current requested class route identifier is available
for that compute node; updating the reservation packet
with a new requested class route identifier if the current
requested class route identifier is not available for that
compute node; and forwarding the reservation packet to
the remaining compute nodes along the communica-
tions path.

3. The method of claim 2 wherein configuring network
hardware of each compute node along the communications
path with routing instructions in dependence upon the avail-
able class route identifier and a network topology for the
network further comprises:

sending, by the target compute node, the reservation packet

to the compute nodes along the communications path;
and

for each compute node along the communications path

receiving the reservation packet: determining whether
the requested class route identifier specified in the res-
ervation packet is still available for that compute node;
and

configuring network hardware of that compute node with

routing instructions that associate the requested class
route identifier specified in the reservation packet with
the network links between that compute node and each
compute node adjacent to that compute node along the
communications path.

4. The method of claim 1 wherein determining, from
among a plurality of class route identifiers for each of the
compute nodes along a communications path from an origin
compute node to a target compute node in the network, a
single class route identifier that is available for each of the
compute nodes along the communications path further com-
prises:

selecting, by each compute node, a requested class route

identifier; and

performing an allreduce operation to obtain the requested

class route identifier having the highest value.

5. The method of claim 4 wherein configuring network
hardware of each compute node along the communications
path with routing instructions in dependence upon the avail-
able class route identifier and a network topology for the
network further comprises configuring network hardware of
each compute node with the routing instructions that associ-
ate the requested class route identifier having the highest
value with the network links between that compute node and
each compute node adjacent to that compute node along the
communications path.

6. The method of claim 1 wherein the compute nodes are
connected together using a plurality of data communications

20

25

30

40

45

55

o

5

24

networks, at least one of the communications networks opti-
mized for point to point operations, and at least one of the
communications networks optimized for collective opera-
tions.
7. A parallel computer for providing point to point data
communications among compute nodes in a global combin-
ing network of the parallel computer, each compute node
connected to each adjacent compute node in the global com-
bining network through a network link, the parallel computer
comprising a plurality of computer processors and computer
memory operatively coupled to the computer processors, the
computer memory having disposed within it computer pro-
gram instructions capable of:
determining, from among a plurality of class route identi-
fiers for each of the compute nodes along a communi-
cations path from an origin compute node to a target
compute node in the network, a single class route iden-
tifier that is available for each of the compute nodes
along the communications path, the class route identifier
specifying the route between multiple nodes;

configuring network hardware of each compute node along
the communications path with routing instructions in
dependence upon the available class route identifier and
a network topology for the network, the routing instruc-
tions for each compute node associating the available
class route identifier with the network links between that
compute node and each compute node adjacent to that
compute node along the communications path;

transmitting, by the origin compute node along the com-
munications path, a network packet to the target com-
pute node, including encoding the available class route
identifier in the network packet; and

routing, by the network hardware of each compute node

along the communications path, the network packet to
the target compute node in dependence upon the routing
instructions for the network hardware of each compute
node and the available class route identifier encoded in
the network packet.

8. The parallel computer of claim 7 wherein determining,
from among a plurality of class route identifiers for each of
the compute nodes along a communications path from an
origin compute node to a target compute node in the network,
a single class route identifier that is available for each of the
compute nodes along the communications path further com-
prises:

encoding, by the origin compute node, a reservation packet

with a current requested class route identifier;

sending, by the origin compute node, the reservation

packet to the compute nodes along the communications
path; and

for each compute node along the communications path

receiving the reservation packet: determining whether
the current requested class route identifier is available
for that compute node; updating the reservation packet
with a new requested class route identifier if the current
requested class route identifier is not available for that
compute node; and forwarding the reservation packet to
the remaining compute nodes along the communica-
tions path.

9. The parallel computer of claim 8 wherein configuring
network hardware of each compute node along the commu-
nications path with routing instructions in dependence upon
the available class route identifier and a network topology for
the network further comprises:

sending, by the target compute node, the reservation packet

to the compute nodes along the communications path;
and

US 9,246,792 B2

25

for each compute node along the communications path
receiving the reservation packet: determining whether
the requested class route identifier specified in the res-
ervation packet is still available for that compute node;
and configuring network hardware of that compute node
with routing instructions that associate the requested
class route identifier specified in the reservation packet
with the network links between that compute node and
each compute node adjacent to that compute node along
the communications path.

10. The parallel computer of claim 7 wherein determining,
from among a plurality of class route identifiers for each of
the compute nodes along a communications path from an
origin compute node to a target compute node in the network,
a single class route identifier that is available for each of the
compute nodes along the communications path further com-
prises:

selecting, by each compute node, a requested class route

identifier; and

performing an allreduce operation to obtain the requested

class route identifier having the highest value.
11. The parallel computer of claim 10 wherein configuring
network hardware of each compute node along the commu-
nications path with routing instructions in dependence upon
the available class route identifier and a network topology for
the network further comprises configuring network hardware
of'each compute node with the routing instructions that asso-
ciate the requested class route identifier having the highest
value with the network links between that compute node and
each compute node adjacent to that compute node along the
communications path.
12. The parallel computer of claim 7 wherein the compute
nodes are connected together using a plurality of data com-
munications networks, at least one of the communications
networks optimized for point to point operations, and at least
one of the communications networks optimized for collective
operations.
13. A computer program product for providing point to
point data communications among compute nodes in a global
combining network of a parallel computer, each compute
node connected to each adjacent compute node in the global
combining network through a network link, the computer
program product disposed upon a computer readable record-
able medium, the computer program product comprising
computer program instructions capable of:
determining, from among a plurality of class route identi-
fiers for each of the compute nodes along a communi-
cations path from an origin compute node to a target
compute node in the network, a single class route iden-
tifier that is available for each of the compute nodes
along the communications path, the class route identifier
specifying the route between multiple nodes;

configuring network hardware of each compute node along
the communications path with routing instructions in
dependence upon the available class route identifier and
a network topology for the network, the routing instruc-
tions for each compute node associating the available
class route identifier with the network links between that
compute node and each compute node adjacent to that
compute node along the communications path;

transmitting, by the origin compute node along the com-
munications path, a network packet to the target com-
pute node, including encoding the available class route
identifier in the network packet; and

routing, by the network hardware of each compute node

along the communications path, the network packet to
the target compute node in dependence upon the routing

10

15

20

25

30

35

40

45

50

55

60

65

26

instructions for the network hardware of each compute
node and the available class route identifier encoded in
the network packet.

14. The computer program product of claim 13 wherein
determining, from among a plurality of class route identifiers
for each of the compute nodes along a communications path
from an origin compute node to a target compute node in the
network, a single class route identifier that is available for
each of the compute nodes along the communications path
further comprises:

encoding, by the origin compute node, a reservation packet

with a current requested class route identifier;

sending, by the origin compute node, the reservation

packet to the compute nodes along the communications
path; and

for each compute node along the communications path

receiving the reservation packet: determining whether
the current requested class route identifier is available
for that compute node; updating the reservation packet
with a new requested class route identifier if the current
requested class route identifier is not available for that
compute node; and forwarding the reservation packet to
the remaining compute nodes along the communica-
tions path.

15. The computer program product of claim 14 wherein
configuring network hardware of each compute node along
the communications path with routing instructions in depen-
dence upon the available class route identifier and a network
topology for the network further comprises:

sending, by the target compute node, the reservation packet

to the compute nodes along the communications path;
and

for each compute node along the communications path

receiving the reservation packet: determining whether
the requested class route identifier specified in the res-
ervation packet is still available for that compute node;
and configuring network hardware of that compute node
with routing instructions that associate the requested
class route identifier specified in the reservation packet
with the network links between that compute node and
each compute node adjacent to that compute node along
the communications path.

16. The computer program product of claim 13 wherein
determining, from among a plurality of class route identifiers
for each of the compute nodes along a communications path
from an origin compute node to a target compute node in the
network, a single class route identifier that is available for
each of the compute nodes along the communications path
further comprises:

selecting, by each compute node, a requested class route

identifier; and

performing an allreduce operation to obtain the requested

class route identifier having the highest value.

17. The computer program product of claim 16 wherein
configuring network hardware of each compute node along
the communications path with routing instructions in depen-
dence upon the available class route identifier and a network
topology for the network further comprises configuring net-
work hardware of each compute node with the routing
instructions that associate the requested class route identifier
having the highest value with the network links between that
compute node and each compute node adjacent to that com-
pute node along the communications path.

18. The computer program product of claim 13 wherein the
compute nodes are connected together using a plurality of
data communications networks, at least one of the communi-

US 9,246,792 B2
27

cations networks optimized for point to point operations, and
at least one of the communications networks optimized for
collective operations.

28

